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ABSTRACT

Spoof attack by replicating biometric traits represents a real threat to an automatic biometric verification/ authentication
system. This is because the system, originally designed to distinguish between genuine users from impostors, simply can-
not distinguish between a replicated biometric sample (replica) from a live sample. An effective solution is to obtain some
measures that can indicate whether or not a biometric trait has been tempered with, e.g., liveness detection measures. These
measures are referred to as evidence of spoofing or anti-spoofing measures. In order to make the final accept/rejection deci-
sion, a straightforward solution to define two thresholds: one for the anti-spoofing measure, and another for the verification
score. We compared two variants of a method that relies on applying two thresholds — one to the verification (match-
ing) score and another to the anti-spoofing measure. Our experiments carried out using a signature database as well as
by simulation show that both the brute-force and its probabilistic variant turn out to be optimal under different operating
conditions.
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1. INTRODUCTION
1.1 Motivation

A biometric authentication system can often be tempered with easily by using a replicated sample (replica) instead of a live
sample. In this scenario, an malefactor has obtained a trace of a genuine sample and produced a biometric replica with high
fidelity. This attack is known as a spoof attack, as opposed to a zero-effort attack. In the latter case, the impostor does not
have (or exploit) the knowledge or the trace of the biometric trait of the person he/she attempts to impersonate. Examples
of biometric replicas abound: gummy fingers,' synthesized voice forgery via transformation,” and animated talking faces.’
Various spoofing attempts for audio-visual person verification have been reported in.*

In order to counteract spoof attacks, liveness detection measures have been developed and the research in this direction
is gaining momentum. According to,? liveness detection measures can be grouped into two categories: (i) the intrinsic
properties of the living human tissue and (ii) involuntarily generated signals. The first approach is commonly referred to as
liveness (or spoof) detection. This solution consists of measuring some some physical properties capable of distinguishing
between a living sample and a replica. Examples are the spectral characteristics of the skin, e.g., absorbance, transmittance
and reflectance of the electromagnetic radiation of different wavelengths; properties of the body fluids, e.g., blood oxy-
genation; the electrical properties of the living human skin, e.g., conductance or dielectric constant; and, physical or visual
skin properties, e.g., density, elasticity or color of skin. The second approach measures the signals that are spontaneously
and uncontrollably generated by a living human body. Examples are pulse, perspiration and temperature. However, this
categorization is not necessarily exhaustive. For instance, in an attempt to counteract audio-visual spoofing,* one can ex-
ploit the audio-visual synchrony information between lips and speech (which are, as a matter of fact, voluntarily generated
signals). In this paper, we shall collectively refer to measurements designed to detect spoofing as evidence of spoofing
(regardless of whether it is a measure of liveness, voluntarily or involuntarily generated signals, or other properties related
to living human tissues).
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Table 1. The four events of a biometric system and the desirable actions to take when considering spoof attacks

action | replication state | comparison attack type
accept live match non-attack (“genuine”)
reject live non-match zero-effort
reject replica match spoof

reject replica non-match impossible

A very common way of making the final decision from the verification score y and the evidence of spoofing e is by
thresholding the two measurements:

accept ify>A; ANe< Ay
reject otherwise,

decision(y, €) = { (D
where A is a threshold applied to  and As is a threshold applied to e. Setting these two thresholds is a highly empirical
exercise and is certainly application dependent.

Although there exist other types of attack in the literature, namely, replay and brute-force attacks,® they are not cov-
ered here because they are relevant only in the context of biometric authentication over the Internet, which involves the
communication between a client and a server computer. A replay attack involves resubmission of a previously acquired
signal at a client computer recorded signal is replayed to the system, bypassing the sensor. The concept of brute-force
attack has its origin in password-based authentication systems; it involves enumeration of all possible passwords. In the
context of biometric security, this attack amounts to enumerating all possible biometric signals or templates. The topic
treated here, i.e., spoof attack, is an attack at the sensor level, in which case, an malefactor has no access to the biometric
system architecture but possesses a biometric trace of the person whom he/she attempts to impersonate.

1.2 Terminology

Since the subject of liveness or spoof detection is relatively new, we are obliged to define some terms, not necessary
adopted elsewhere in the literature, but at least consistent throughout this paper.

A verification score is considered a match if it is a result of comparing a biometric reference with a biometric sample,
both of which originated from the same person. Conversely, if both the reference and the sample are from two different
persons, then, the score is a non-match.

A biometric sample is referred to as a live one if it has been obtained from a living person; otherwise, it is a replica or
a spoofed sample. One can use the evidence of spoofing to infer how likely it is that a biometric has been tempered with.
The term “spoofing” here is synonymous with impersonating, masquerading or mimicking. Thus, the value of an evidence
of spoofing should be low if a biometric sample is taken from a living person, and high if it is a biometric replica. We
avoid the term “liveness measure” because as mentioned in,’ a liveness measure does not necessarily quantify liveness, but
rather physical properties of a biometric trait (e.g., skin transmittance, absorbance, etc).

For each access, a biometric system can obtain two measurements: the verification (comparison) score and the evidence
of spoofing. This joint observation is a result of the following two dichotomies of events: match versus non-match and
live versus replicated sample. The desirable course of action to take for each of these four events are shown in Table 1.
Thus, we reserve the term “genuine” (in the last column of Table 1) to mean that a biometric sample is both a live one and
the comparison is a match. In this case the correct decision is to accept the access request. Similarly, we reserve the term
“impostor” to cover the remaining three cases which should result in reject decisions, as follows: (i) a zero-effort attack in
a comparison involving a non-match live sample; (ii) a spoof attack under a match comparison involving a replica; and (iii)
an impossible attack in real life (but irronically conceivable in an experimental setting) involving a non-match replica.

In order to understand the different types of attack, it is instructive to consider the following hypothetical break-in
example: John tries to illegally access Smith’s notebook that is protected by a fingerprint sensor. In this case, it really does
not matter if John uses his own fingerprint or a replicated sample of his fingerprint. The first case is a zero-effort attack and
the second is impossible, i.e., John has no incentive to replicate his own fingerprint in order to access Smith’s notebook.
This is because in either case, the comparison is a non-match and the system is likely reject the access request. In a real
world attack, John would use an exact replica of Smith’s fingerprint. This constitutes a spoof attack.
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1.3 Contributions

We propose two strategies to optimally set the above thresholds: brute-force optimization and probabilistic. The first
strategy consists of exhaustively search for an optimal solution, minimizing a performance criterion. The second approach
capitalizes on the logic construct of (1) but in probabilistic sense. For this reason, we also refer to the first strategy as
“double threshold” and the second one as “probabilistic double threshold”.

Although both strategies rely on the same logic construct, the brute-force optimization does not commit to an as-
sumption that its probabilistic version does; that is, the latter assumes that both the matching score and the anti-spoofing
measure are independent of each other. Experimental results on real and simulated data show that both strategies have
their own advantages in different parts of Receiver’s Operating Characteristic (ROC) curve. In particular, we found that
the double-threshold method (with brute-force optimization) performs better at low false acceptance rate (FAR) whereas
its probabilistic version dominates at low false rejection rate (FRR).

The observed superiority of the brute-force optimization suggests that treating both the matching score and the evidence
of spoofing (or anti-spoofing measure) as independent sources of information is not appropriate. This calls for further
investigation of appropriate modelling techniques.

This paper is organized as follow: Section 2 presents our proposal. Section 3 presents a case study, and this is followed
by conclusions in Section 4.

2. METHODOLOGY
2.1 Notation
We shall adopt the following notation:

e y € R is a verification score. We shall interpret the score as a similarity score, such that a high value implies a
match comparison whereas a low value implies a non-match comparison. If a biometric matching module outputs
a distance or dissimilarity score, for instance, one can simply invert the sign of the score in order to interpret it as a
similarity score.

e M € {1,0} is the state of comparison (between a reference/template and a query sample), which can either be a
match or a non-match.

e the replication event R € {0, 1}. This is a binary event, i.e., a sample is either a replica or not.

e ¢ € Ris the evidence of spoofing. An example of this is a fingerprint liveness detection measure®. Often, the system
designer has to design an evidence specific to a type of spoof attack. Since there are many ways to spoof a system,
in principle, one has to design a measure to seek evidence for each type of attack. As a preliminary study, we shall
limit the scope of discussion to a single attack.

2.2 Our Proposals
2.2.1 Double Threshold by Brute-force Optimization

The brute-force approach simply searches for all possible threshold pairs in the space spanned by both the matching score
and the evidence of spoofing, ) x £ and then search the solution that minimizes a criterion. This procedure is shown in
Algorithm 1. In this example, the performance is measured in terms of half total error rate (HTER), defined as the average
of false acceptance rate (FAR) and false rejection rate (FRR). Recall that the “genuine” or positive class here is defined by
a match comparison and the replication state being “live”. The remaining classes which include the zero-effort and spoof
attacks, as shown in Table 1 are collectively referred to as a negative class. FAR is, therefore, defined by:

__ # of wrongly classified negative examples

)

FAR
# of total examples

*The framework developed here does not restrict e to be a scalar value, i.e., e can be a vector of measurements. We treat e as a scalar
value because in the liveness detection literature,” one often builds a dedicated classifier for this task and so e can be viewed as an
output of this classifier.
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Algorithm 1 Double Threshold by Brute-force Optimization
HTER,;, = 00
fory € YV do
fore € £do
HTER = Evaluate performance with (y, e)
if HTER,,,;;, > HTER then
HTER,,;,, = HTER

Ys =Y
ey =€
end if
end for
end for

return (Y, €x)

Evidence of spoofing

0.05 0.20 0.34 0.49 0.63
Matching score

Figure 1. An example of brute-force optimization. The vertical bar shows the value of HTER in
the (y, e) space.

whereas FRR by:

FRR — # of wrongly classified positive examples.

# of total examples

Although HTER is used here, other criterion such as the weighted error rate (WER) that weighs FAR and FRR in different
proportions can be used. One can recognize that WER is a more general criterion than HTER because the latter weighs the
two errors in equal proportions.

2.2.2 Probabilistic Double Threshold

Effectively, one seeks to estimate the posterior probability of a match sample, and that it is not a replica, given the obser-
vations y and e. This quantity can be expressed by:

P(M =1,R = 0ly,¢) = P(M = 1|y) P(R = 0]¢) @)

assuming that both the posterior probability indicating the identity and the probability of the spoofing attack are two
independent quantity.

We resultant posterior map of P(M = 1, R = 0|y, e) using our actual database (to be described in Section 3.1) is
shown in Figure 2. The posterior probability map peaks in the lower right corner of the (y,e) space, indicating that genuine
samples should have high a matching score as well as low evidence of spoofing, as required.
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Prob. double threshold:&y =0.00

Evidence of spoofing

0 0.1 0.2 0.3 0.4 0.5 0.6
Matching/Comparison score

Figure 2. An example of decision boundary obtained by probabilistic double thresholding. Red dots are
spoofed (non-zero effort) samples, magenta cicles are zero-effort (impostor) samples, and blue crosses are
genuine samples. The vertical bar shows the values of the posterior probability map of the (y,e) space.

In comparison, a conventional biometric system without measuring the evidence of spoofing can be described by one
which estimates the posterior probability P(M = 1]y) (not shown here). In both cases, the theoretically optimal decision
is to accept an identity claim if the posterior probability exceeds 0.5.

3. A CASE STUDY USING SIGNATURE BIOMETRICS
3.1 Databases

The signature biometrics is arguably the easiest modality subject to forgery. This is evident by the existence of many sig-
nature databases supplied with forged signatures. We will use a subset of the Biosecure multimodal biometric database!®
that contains 105 subjects. For each subject, there are 15 genuine signatures, 5 forged signatures and 10 signatures from
uninformed impostors (from other subjects). There are therefore altogether 525 forged signatures, 1575 genuine signatures
and 1050 signatures from uninformed impostors, constituting the ground-truth prior probabilities.

Two types of signature classifiers are used, one serving as a signature verifier (classifier) and the other as a forgery
detection classifier (distinguishing between a genuine and a forged signature). The signature verifier is classifier based on
a dynamic time warping (DTW).

The signature verifier is designed to compare a pair of signature dynamics, taking five raw features, i.e., normalized
pen position (to zero mean), pen pressure, azimuth and the altitude of the pen, as well as two derived ones, pen movement
direction and pen velocity (both obtained from two consecutive pen locations in time). The DTW is applied to each of the
seven features independently and then the resultant distances are combined using a client-specific fusion strategy.'!

The signature forgery detection classifier developed is very preliminary. It assumes that the forgers do not have access
to the temporal dynamics but only the texture signature. This classifier is an ensemble of neural networks trained with the
AdaBoost algorithm.!? It takes ten features, consisting of four features associated with pen pressures and the remaining
associated with velocities.

Since in principle, the architecture of both classifiers are not important for the understanding of our topic, the interested
readers are referred to.!3

TThe database can be downloaded from http://biosecure.it-sudparis.eu/AB/getdatabase.php.
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Figure 3. Comparison of performance of the two strategies reported on the signature modality of the Biosecure
DS2 database. Blue continuous curves — the brute-force optimisation computed on the test set; green dashed
curve — the probabilistic double threshold method; circle — the (FAR,FRR) operating point of the the brute-
force method obtained on the training set.

3.2 Empirical Results

Using the data set as shown in Figure 2, we compared the two methods. In order to plot the ROC/DET curves for the double
threshold method by brute-force optimization, the test data set was used directly. This is consistent with the approach used
in the literature, that is, a DET/ROC curve is always plotted using the test data set. However, there is only one operating
point that can validly represent the actual generalisation performance of the brute-force method. This point is shown as a
black circle in Figure 3.

As can be observed, the brute-force method is fairly robust at finding the optimal operating point in terms of HTER.
This criterion turns out to be very close to EER where, FAR equals FRR. The method also significantly outperforms
the probabilistic double-threshold approach at low FAR. Although the probabilistic double-threshold approach appears
to be inferior, it can reach low FRR region that the brute-force approach cannot. Therefore, both methods can possibly
complement each other, depending on whether FAR or FRR is favoured.

3.3 Simulations

The experiment in the previous section contains two major weaknesses. Firstly, the spoof detection classifier is very weak.
Secondly, the impostor skills are too weak to introduce any harm to the verification system; this might wrongly lead to the
conclusion that the spoof detection classifier is unnecessary.

To overcome the above two data-dependent weaknesses, we simulate the following experiments.

o Increase the competency of the spoof detection classifier: This can be done by adding a small positive constant,
v to the evidence of spoof attack, keeping the rest of the data to be the same. Higher values of ~, will “push” the
measure e away from that of the zero-effort attack. In our simulation, the constant . is varied from O to 8 in fine
steps.

o Increase the competency of spoof attack: This can be done by adding a small constant value, -, to the verification
score of the spoof attack, keeping the rest of the data unchanged. The result is that the verification scores of the spoof
attack are moved closer to that of the genuine attempt. This constant value ranges from 0 to 0.2 in fine steps.
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Figure 4. Comparison of performance of the two strategies reported on the signature modality of the Biosecure DS2 database

The results of the two simulation experiments are shown in Figures 4, respectively. As can be observed, under the
increased competency of the spoofing classifier as well as under the increased competency the spoofing skill (with both
varied independently), the probabilistic double-threshold method will outperform the brute-force method at some point.

4. CONCLUSIONS

In this paper, we study two variants of a method that that seek to combine the verification score (y) and the evidence of
spoofing (e), namely a brute-force strategy and its probabilistic version. Experimental results show that both methods
competes well with each other at different FAR and FRR operating points. They also complement well each other under
the different competency of spoofing classifier and the forgery skill. This study is somewhoat preliminary, possible future
research directions include:(1) Measuring and understanding the correlation between y and e; (2) Extension of e to multi-
dimensional; (3) Extension to multiple types of attack; (4) Applying the proposed technique to other biometric modalities;
and (5) Extension to a discriminative solution.
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